Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Rui-Feng Song, ${ }^{\text {a }}$ * Jian-Rong Li ${ }^{\text {b }}$

 and Ru-Qiang Zou ${ }^{\text {b }}$${ }^{\text {a }}$ Department of Chemistry and Chemical Engineering, University of Science and Technology of Suzhou, Suzhou 215009,
People's Republic of China, and ${ }^{\text {b }}$ Department of Chemistry, Nankai University, Tianjin 300071,
People's Republic of China
Correspondence e-mail:
songrf@mail.usts.edu.cn

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.008 \AA$
Disorder in solvent or counterion
R factor $=0.060$
$w R$ factor $=0.166$
Data-to-parameter ratio $=15.2$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

Bis\{2-[3-(2-pyridyl)pyrazol-1-ylmethyl]pyridine\}nickel(II) bis(perchlorate) chloroform disolvate

In the title compound, $\left[\mathrm{Ni}\left(\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{~N}_{4}\right)_{2}\right]\left(\mathrm{ClO}_{4}\right)_{2} \cdot 2 \mathrm{CHCl}_{3}$, each of the two crystallographically independent nickel(II) complex molecules lies on a twofold axis. In each case, the $\mathrm{Ni}^{\mathrm{II}}$ atom is coordinated by the six N atoms of two 2-[3-(2-pyridyl)pyrazol-1-ylmethyl]pyridine ligands in a distorted octahedral geometry. The $\mathrm{Ni}-\mathrm{N}_{\text {pyrazole }}$ bond lengths [1.977 (3)-1.997 (4) \AA] are appreciably shorter than the $\mathrm{Ni}-$ $\mathrm{N}_{\text {pyridine }}$ bond lengths [2.133 (4)-2.184 (4) \AA].

Comment

Many new multinucleating ligands based on pyrazolyl-pyridine chelating units have been prepared and studied (Bell et al., 2002; Ward et al., 2001; Zou et al., 2004). These ligands have proved to be a fertile source of interesting new metal complexes, which encompass a wide range of structural types, and which have made a significant contribution to coordination and supramolecular chemistry. Recently, we have prepared a non-planar flexible ligand, 2-[3-(2-pyridyl)pyrazol1 -ylmethyl]pyridine (L). In this paper, we present a nickel complex of this ligand, which crystallizes as the title solvate, $\left[\mathrm{Ni}(L)_{2}\right]\left(\mathrm{ClO}_{4}\right)_{2} \cdot 2 \mathrm{CHCl}_{3}$, (I).

(I)

The asymmetric unit of (I) contains two half-cations, two ClO_{4}^{-}anions and two CHCl_{3} molecules (Fig. 1). In both cations, the $\mathrm{Ni}^{\mathrm{II}}$ atom, on a twofold axis, has a distorted $M \mathrm{~N}_{6}$ octahedral geometry defined by six N atoms of two ligands. All the $\mathrm{Ni}-\mathrm{N}$ bond distances (Table 1) are within the range expected for such bonds (Singh et al., 2003; Watson et al., 1987). With the $\mathrm{Ni}^{\mathrm{II}}$ atom, the coordinated tridentate ligand gives rise to one five- and one six-membered chelate rings. The distortions from ideal octahedral geometry are evident from the values presented in Table 1.

The $\mathrm{Ni}-\mathrm{N}_{\text {pyrazole }}$ bond lengths [1.977 (3)-1.997 (4) \AA] are appreciably shorter than the $\mathrm{Ni}-\mathrm{N}_{\text {pyridine }}$ bond lengths [2.133 (4)-2.184 (4) A]. A similar trend was observed in other Ni complexes (Singh et al., 2003; Watson et al., 1987).

Received 19 September 2005
Accepted 7 October 2005
Online 15 October 2005

Figure 1
A perspective view of the two independent cations of (I), with 20% probability displacement ellipsoids and the atom-labelling scheme [symmetry code: (i) $-x, y,-z-\frac{1}{2}$; (ii) $1-x, y, \frac{1}{2}-z$]. The perchlorate groups, chloroform molecules and H atoms have been omitted for clarity.

In the Ni1-containing cation (Fig. 1), the pyrazole ring $\mathrm{N} 2 /$ $\mathrm{N} 3 / \mathrm{C} 8 / \mathrm{C} 7 / \mathrm{C} 6(A 1)$ and the pyridine ring $\mathrm{N} 1 / \mathrm{C} 1-\mathrm{C} 5(B 1)$ are almost coplanar, with a dihedral angle $A 1 / B 1$ of $4.0(1)^{\circ}$. The dihedral angles $A 1 / C 1$ and $B 1 / C 1$, where $C 1$ denotes the $\mathrm{N} 4 /$ $\mathrm{C} 10-\mathrm{C} 14$ pyridine ring, are 25.01 (1) and $16.6(1)^{\circ}$, respectively. In the Ni2-containing cation, the corresponding dihedral angles $A 2 / B 2, A 2 / C 2$ and $B 2 / C 2$ are 8.5 (1), 31.2 (2) and $35.0(1)^{\circ}$, respectively $(A 2, B 2$ and $C 2$ denote the $\mathrm{N} 6 / \mathrm{N} 7 / \mathrm{C} 20-$ C22, N5/C15-C19 and N8/C24-C28 rings, respectively). Thus, the six-membered chelate rings exist in boat conformations. Similar chelate ring conformations were observed in the crystal structures of other compounds with this class of nonplanar ligands (Mahapatra et al., 1993; Manikandan et al., 1996; Orrell et al., 1997).

Experimental

The ligand 2-[3-(2-pyridyl)pyrazol-1-ylmethyl]pyridine was prepared by a general procedure reported in the literature (Singh et al., 2003). The title complex was prepared by stirring together a solution of 2-[3-(2-pyridyl)pyrazol-1-ylmethyl]pyridine $(94.3 \mathrm{mg}, \quad 0.4 \mathrm{mmol}) \quad$ in chloroform $(20 \mathrm{ml})$ with a methanol solution $(20 \mathrm{ml})$ of $\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]-$ $\left[\mathrm{ClO}_{4}\right]_{2}(73.2 \mathrm{mg}, 0.20 \mathrm{mmol})$ for 5 h at room temperature and then filtering. Slow evaporation of the filtrate yielded block-shaped purple crystals suitable for X-ray analysis. Analysis found: C 37.31, H 2.75 , N 11.58%; calculated for $\mathrm{C}_{30} \mathrm{H}_{26} \mathrm{Cl}_{8} \mathrm{~N}_{8} \mathrm{NiO}_{8}$: C 37.19, $\mathrm{H}, 2.70$, N 11.57%.

Crystal data

$\left[\mathrm{Ni}\left(\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{~N}_{4}\right)_{2}\right]\left(\mathrm{ClO}_{4}\right)_{2} \cdot 2 \mathrm{CHCl}_{3}$
$M_{r}=968.90$
Monoclinic, $C 2 / c$
$a=22.297(6) \AA$
$b=17.257(5) \AA$
$c=23.801(7) \AA$
$\beta=116.551(4)^{\circ}$
$V=8192(4) \AA^{3}$
$Z=8$
Data collection
Bruker SMART CCD area-detector
\quad diffractometer
φ and ω scans
Absorption correction: multi-scan
$\quad(S A D A B S ;$ Sheldrick, 1996$)$
$T_{\min }=0.703, T_{\text {max }}=0.743$
23272 measured reflections

$$
\begin{aligned}
& D_{x}=1.571 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 1006 \\
& \quad \text { reflections } \\
& \theta=3.0-22.6^{\circ} \\
& \mu=1.05 \mathrm{~mm}^{-1} \\
& T=293(2) \mathrm{K} \\
& \text { Block, purple } \\
& 0.36 \times 0.30 \times 0.30 \mathrm{~mm}
\end{aligned}
$$

> 8395 independent reflections
> 4749 reflections with $I>2 \sigma(I)$
> $R_{\text {int }}=0.055$
> $\theta_{\max }=26.4^{\circ}$
> $h=-27 \rightarrow 27$
> $k=-18 \rightarrow 21$
> $l=-29 \rightarrow 27$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0746 P)^{2} \\
&+8.6393 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }=0.002 \\
& \Delta \rho_{\max }=0.62 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.39 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left(\AA^{\circ}{ }^{\circ}\right)$.

$\mathrm{Ni} 1-\mathrm{N} 2$	$1.997(4)$	$\mathrm{Ni} 2-\mathrm{N} 6$	$1.977(3)$
$\mathrm{N} 11-\mathrm{N} 1$	$2.133(4)$	$\mathrm{Ni} 2-\mathrm{N} 5$	$2.143(3)$
$\mathrm{Ni} 1-\mathrm{N} 4$	$2.184(4)$	$\mathrm{Ni} 2-\mathrm{N} 8$	$2.173(3)$
$\mathrm{N} 2-\mathrm{Ni} 1-\mathrm{N} 2^{\mathrm{i}}$	$173.8(3)$	$\mathrm{N} 6-\mathrm{Ni} 2-\mathrm{N} 6^{\mathrm{ii}}$	$171.7(2)$
$\mathrm{N} 2-\mathrm{Ni} 1-\mathrm{N} 1^{\mathrm{i}}$	$98.32(15)$	$\mathrm{N} 6-\mathrm{Ni} 2-\mathrm{N} 5^{\mathrm{ii}}$	$97.35(13)$
$\mathrm{N} 2-\mathrm{Ni} 1-\mathrm{N} 1$	$77.45(16)$	$\mathrm{N} 6-\mathrm{Ni} 2-\mathrm{N} 5$	$77.21(13)$
$\mathrm{N} 1^{\mathrm{i}}-\mathrm{Ni} 1-\mathrm{N} 1$	$96.02(19)$	$\mathrm{N} 5^{i 1}-\mathrm{Ni} 2-\mathrm{N} 5$	$98.95(19)$
$\mathrm{N} 2-\mathrm{Ni} 1-\mathrm{N} 4^{\mathrm{i}}$	$97.70(16)$	$\mathrm{N} 6-\mathrm{Ni} 2-\mathrm{N} 8^{\mathrm{ii}}$	$87.29(14)$
$\mathrm{N} 1-\mathrm{Ni} 1-\mathrm{N} 4^{\mathrm{i}}$	$90.26(14)$	$\mathrm{N} 5-\mathrm{Ni} 2-\mathrm{N} 8^{\mathrm{ii}}$	$162.57(13)$
$\mathrm{N} 2-\mathrm{Ni} 1-\mathrm{N} 4$	$86.81(17)$	$\mathrm{N} 6-\mathrm{Ni} 2-\mathrm{N} 8$	$98.89(13)$
$\mathrm{N} 1-\mathrm{Ni} 1-\mathrm{N} 4$	$163.72(15)$	$\mathrm{N} 5-\mathrm{Ni} 2-\mathrm{N} 8$	$90.80(13)$
$\mathrm{N} 4^{\mathrm{i}}-\mathrm{Ni} 1-\mathrm{N} 4$	$87.7(2)$	$\mathrm{N} 8^{\mathrm{iii}}-\mathrm{Ni} 2-\mathrm{N} 8$	$83.70(19)$

Symmetry codes: (i) $-x, y,-z-\frac{1}{2}$; (ii) $-x+1, y,-z+\frac{1}{2}$.
H atoms were included in calculated positions and refined as riding, with $\mathrm{C}-\mathrm{H}$ distances of $0.93 \AA$ (aromatic H) and $0.97 \AA$ (methylene H), and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$. One perchlorate ion is rotationally disordered, around the $\mathrm{Cl} 2-\mathrm{O} 5$ bond, between two positions with refined occupancies of 0.446 (12) and 0.554 (12) for atoms O6, O7 and O8, and atoms $\mathrm{O}^{\prime}, \mathrm{O}^{\prime}$ and O^{\prime}, respectively. The $\mathrm{Cl}-\mathrm{O}$ distances were restrained to be equal to within $0.01 \AA$. The Cl atoms of one chloroform molecule (attached to C29) were also refined as disordered between two positions with occupancies of 0.446 (12) and 0.554 (12), and with restrained $\mathrm{Cl}-\mathrm{C}$ bond lengths.

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

This work was supported by the Science Foundation of the University of Science and Technology of Suzhou.

References

Bell, Z. R., Jeffery, J. C., McCleverty, J. A. \& Ward, M. D. (2002). Angew. Chem. Int. Ed. 41, 2515-2518.
Bruker (1997). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (1998). SMART. Version 5.0. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (1999). SAINT. Version 6.02a. Bruker AXS Inc., Madison, Wisconsin, USA.
Mahapatra, S., Butcher, R. J. \& Mukherjee, R. (1993). J. Chem. Soc. Dalton Trans. pp. 3723-3726.
Manikandan, P., Varghese, B. \& Manoharan, P. T. (1996). J. Chem. Soc. Dalton Trans. pp. 371-376.
Orrell, K. G., Osborne, A. G., da Silva, M. W., Hursthouse, M. B. \& Coles, S. J. (1997). Polyhedron, 16, 3003-3012.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

metal-organic papers

Singh, S., Mishra, Mukherjee, V. J., Seethalekshmi, N. \& Mukherjee, R. (2003). Dalton Trans. pp. 3392-3397.
Ward, M. D., McCleverty, J. A. \& Jeffery, J. C. (2001). Coord. Chem. Rev. 222, 251-272.

Watson, A. A., House, D. A. \& Steel, P. J. (1987). Inorg. Chim. Acta, 130, 167176.

Zou, R.-Q., Bu, X.-H. \& Zhang, R.-H. (2004). Inorg. Chem. 43, 5382 5386.

